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Abstract

The Arctic is particularly sensitive to climate change, but the independent effects of increasing atmospheric CO2 con-
centration (pCO2) and temperature on high-latitude forests are poorly understood. Here, we present a new, annually
resolved record of stable carbon isotope (d13C) data determined from Larix cajanderi tree cores collected from far
northeastern Siberia in order to investigate the physiological response of these trees to regional warming. The tree-
ring record, which extends from 1912 through 1961 (50 years), targets early twentieth-century warming (ETCW), a
natural warming event in the 1920s to 1940s that was limited to Northern hemisphere high latitudes. Our data show
that net carbon isotope fractionation (D13C), decreased by 1.7& across the ETCW, which is consistent with increased
water stress in response to climate warming and dryer soils. To investigate whether this signal is present across the
northern boreal forest, we compiled published carbon isotope data from 14 high-latitude sites within Europe, Asia,
and North America. The resulting dataset covered the entire twentieth century and spanned both natural ETCW and
anthropogenic Late Twentieth-Century Warming (~0.7 °C per decade). After correcting for a ~1& increase in D13C in
response to twentieth century pCO2 rise, a significant negative relationship (r = !0.53, P < 0.0001) between the aver-
age, annual D13C values and regional annual temperature anomalies is observed, suggesting a strong control of tem-
perature on the D13C value of trees growing at high latitudes. We calculate a 17% increase in intrinsic water-use
efficiency within these forests across the twentieth century, of which approximately half is attributed to a decrease in
stomatal conductance in order to conserve water in response to drying conditions, with the other half being attributed
to increasing pCO2. We conclude that annual tree-ring records from northern high-latitude forests record the effects
of climate warming and pCO2 rise across the twentieth century.
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Introduction

The taiga (i.e., boreal forest) biome extends across much
of the northern portions of North America, Europe, and
Asia and includes forests of Pinus, Picea, and Larix that
span ~1 billion hectares, and represents ~30% of all
forested land (FAO, 2000). This region, like much of the
northern high latitudes, is likely to be especially sensi-
tive to warming due to climate change (IPCC, 2007).
The classic description of carbon isotope fractionation
between plant tissue and the atmosphere (Farquhar
et al., 1982, 1989) has been widely used to investigate
the physiological response of trees growing within the
taiga to climate change (e.g., Robertson et al., 1997;
Waterhouse et al., 2000; Buhay et al., 2008; Gagen et al.,
2008; Hilasvuori, 2011; Holzk€amper et al., 2012; Sidor-
ova et al., 2013). Researchers have shown that the d13C
value measured from successive annual tree-rings
reflects changes in the d13C value of atmospheric CO2

(d13CCO2 ) and atmospheric CO2 concentration (pCO2)

(McCarroll & Loader, 2004; McCarroll et al., 2009; Schu-
bert & Jahren, 2012) and is modified by changes in
stomatal conductance (Warren et al., 2001; Arneth et al.,
2002; Leavitt, 2002; McCarroll et al., 2003). Factors that
directly (i.e., precipitation, relative humidity, vapor
pressure deficit) or indirectly (i.e., temperature, sun-
shine) influence moisture status therefore correlate well
with tree-ring d13C values. As a result, annual or suban-
nual changes in tree-ring d13C values have been inter-
preted in terms of changes in local climate or
environmental conditions at these sites, including pre-
cipitation (Holzk€amper et al., 2008; Knorre et al., 2010;
Schubert & Jahren, 2011), relative humidity (Edwards
et al., 2000), vapor pressure deficit (Berninger et al.,
2000; Sidorova et al., 2008), temperature (Gagen et al.,
2007; Kirdyanov et al., 2008; Tardif et al., 2008; Porter
et al., 2009; Sidorova et al., 2009; Loader et al., 2010;
Seftigen et al., 2011), river flow depth (Waterhouse et al.,
2000), and sunshine/cloudiness (Hilasvuori & Bernin-
ger, 2010; Young et al., 2010, 2012; Loader et al., 2013).
Unfortunately, within remote regions of the planet,

high-quality climate data for comparison with tree-ring
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d13C records are often lacking in spatial and/or tempo-
ral resolution. Climate information, including basic
temperature data, is particularly poor in high-latitude
sites, with little to no coverage across large land areas
(Cowtan & Way, 2014). As a result, regional tempera-
ture trends must be determined by interpolating widely
spaced temperature data within gridded areas (e.g.,
Jones et al., 1999; Polyakov et al., 2003). Using these
gridded datasets, two broad intervals of warming have
been identified within northern high-latitude sites dur-
ing the twentieth century (see review by Yamanouchi,
2011). These include (i) the early twentieth-century
warming (ETCW), a natural warming event in the
1920s to 1940s that was limited to high-latitude North-
ern hemisphere sites and (ii) the anthropogenic late
twentieth-century warming (LTCW), which began
slowly (‘slow LTCW’, 1966–1985), but has been espe-
cially rapid in the Arctic since 1985 (‘rapid LTCW’). To
investigate how regional warming impacts the northern
taiga forest, we first present a new, annually resolved
d13C dataset across a 50-year interval (1912–1961) span-
ning the ETCW from Larix cajanderi trees growing in far
northeastern Siberia. We then combine these data with
published tree-ring data spanning the entire twentieth
century from trees growing across 14 northern high-
latitude sites to identify any region-wide trends in car-
bon isotope discrimination across both warming events.
We used these data to test two hypotheses regarding
the boreal forest biome: (i) warming temperatures
induce a decline in stomatal conductance characteristic
of increasing water stress, and (ii) intrinsic water-use
efficiency (iWUE) increases as a result of the indepen-
dent effects of decreasing stomatal conductance in
response to climate warming and increasing pCO2.

Materials and methods

Study area

Three L. cajanderi trees (Larix01, Larix02, and Larix03) were

cored at breast height on the eastern side of their trunk in
August 2013. The trees were growing within 1 km of each
other at a single, open-forested site near the Northeast

Science Station in Cherskiy, Sakha Republic, Russia (68° 440

N, 161° 230 E; Fig. 1). The instrumental climate record of
Cherskiy is limited, but characterizes a cold K€oppen–Geiger
climate type with cold and dry summers (Dsc) (Peel et al.,
2007). Mean annual temperature and mean annual precipi-
tation across the instrumental record are !11.3 °C (1955–
2013) and 190 mm (1940–2013), respectively (NOAA Climate

Services, 2013).

Wood-core sampling

Each core was sanded by hand using 100-grit, then 600-grit
sandpaper in order to produce a flat surface for sampling and
to better identify tree-ring boundaries. Each core contained
well-defined annual rings, and calendar years were assigned

by counting the annual growth bands under an optical stere-
omicroscope (Fisher S90017 Stereo Student Microscope;
Thermo Fisher, Bremen, Germany). Visual inspection of the

ring widths was used to cross-check the dating across the
three cores. Latewood was sampled by hand from each core
using a razor blade from annual rings across a 50-year interval

(1912–1961) to bracket the entire ETCW event. The latewood,
rather than the earlywood, was targeted because latewood
forms entirely from recent sugars obtained during the current
growing season, and therefore, its isotopic composition con-

tains the climate signal of the corresponding growth year
(Lipp et al., 1991); earlywood formation in some species has
been shown to incorporate stored carbon from previous years’

growth (J€aggi et al., 2002; Helle & Schleser, 2004).
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Fig. 1 Distribution of the 15 sites (including the new site reported here from near Cherskiy, Russia in far northeastern Siberia; star)

from which annual d13C tree-ring data were compiled for analysis. Sites are labeled according to the abbreviated site names listed in

Table 2.
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Carbon isotope analysis

Latewood subsamples of between 75 and 200 lg were
weighed into tin capsules for isotope analysis. d13C values
were determined on whole wood using a Delta V Advantage
Isotope Ratio Mass Spectrometer (Thermo Fisher) joined with

a Thermo Finnigan Elemental Analyzer (Flash EA1112 Series,
Bremen, Germany) at the University of Louisiana at Lafayette.
Multiple studies have demonstrated a constant linear offset

between whole wood and cellulose d13C values (Leavitt &
Long, 1982; Borella & Leuenberger, 1998; Berninger et al.,
2000; Sidorova et al., 2008; Tei et al., 2013; Edvardsson et al.,
2014). The resulting tree-ring isotope values were expressed in
d-notation in units of per mil (&) and normalized to the
Vienna Pee Dee Belemnite scale using three internal labora-
tory reference materials (JGLY = !43.51&; JHIST = !8.13&;

JRICE = !27.37&). At least one quality assurance sample
(JGLUC = !10.52&) was analyzed within each batch of tree-
ring subsamples and analyzed as an unknown. Over the

course of all analyses, the JGLUC quality assurance sample
averaged !10.46 " 0.26& ("1r, n = 9), which is in agreement
with the calibrated value.

Atmospheric corrections of tree-ring d¹³C values

Because the d13C value of atmospheric CO2 (d13CCO2 ) changes
across the study interval, here we analyzed the data in terms

of net carbon isotope fractionation (D13C), after Farquhar et al.
(1989):

D13C ¼ aþ ðb! aÞðci=caÞ ð1Þ

where

D13C ¼ ðd13CCO2 ! d13CÞ=ð1þ d13C=1000Þ ð2Þ

Within the above, a and b are constants relating to gaseous
diffusion through leaf stomata (a = 4.4&) and enzymatic car-

bon fixation (b = 28.3&, Schubert & Jahren (2012)), respec-
tively, and ci and ca represent the intercellular and
atmospheric concentration of CO2, respectively. Correction of

d13C records for changes in d13CCO2 via Eqn (2) has long been
a standard procedure when interpreting tree-ring records (see
review by McCarroll & Loader, 2004). More recently, workers
have also been adjusting tree-ring records for changes in pCO2

concentration (Treydte et al., 2001, 2009; Gagen et al., 2007;
Kirdyanov et al., 2008; McCarroll et al., 2009; Seftigen et al.,
2011; Wang et al., 2011; Kern et al., 2012; Szymczak et al., 2012;
Schollaen et al., 2013; Tei et al., 2013, 2014; Konter et al., 2014;
Xu et al., 2014; B"egin et al., 2015), but the corrections used are
wide-ranging (reviewed within Schubert & Jahren, 2012).

Here, we applied the hyperbolic relationship developed
within Schubert & Jahren (2012) to adjust the raw D13C values
(from here out called ‘D13Craw’) for the increase in pCO2

observed across the study period. This correction, which has

also been applied to fossil organic matter (Schubert & Jahren,
2013, 2015), reconciles the wide range of previous corrections
that have been applied, and can be described by the following

equation:

D13Ccorr ¼ D13Craw ! ½ðAÞðBÞðpCO2ðtÞ þ CÞ(=½Aþ ðBÞðpCO2ðtÞ
þ CÞ( ! ½ðAÞðBÞðpCO2ðt¼0Þ þ CÞ(=½Aþ ðBÞðpCO2ðt¼0Þ
þ CÞ(

ð3Þ

where A = 28.26, B = 0.22, and C = 23.9 (after Schubert & Jah-
ren, 2015), pCO2(t=0) is the pre-industrial pCO2 level (i.e.,
285 ppm), and pCO2(t) is the pCO2 level at each year t (Table 1).

Results

Relative changes in the d13C value of the three tree
cores showed good agreement with each other (Fig. 2a).
An overall decreasing trend of 0.20& per decade is
observed in the averaged d13C record, which is attribu-
ted in part to the 0.39& decline in d13CCO2 across the
50-year study interval (0.08& per decade). D13Craw val-
ues (Eqn (2)) showed an overall increasing trend of
0.13& per decade (Fig. 2b) that is consistent with the
observed positive relationship between ∆13C and pCO2

(Feng & Epstein, 1995; Treydte et al., 2009; Schubert &
Jahren, 2012). However, within this long-term increas-
ing trend, D13Craw values show a notable 1.7& decrease
from 1931 to 1940, which then increases back to back-
ground values by 1951 (Fig. 2b). The pCO2 corrected
record (D13Ccorr, Eqn (3)) yielded an insignificant
(P = 0.22) positive trend of only 0.06& per decade and
maintained the relatively low D13C values in the 1930s
and 1940s (Fig. 2c).
The period of decreased ∆13C values from the 1930s

through the 1940s can be interpreted in terms of a
decrease in ci/ca in response to a decrease in stomatal
conductance or increase in photosynthetic rate
(Eqn (1)). Support for this is provided by the regional
surface air temperature (SAT) data, which shows clear
Arctic warming associated with the ETCW event across
the period of decreased ∆13Ccorr values (Fig. 4d). Nota-
bly, we see greatest correlations between the SAT and
∆13Ccorr records for the latitudinal band that includes
our study site (65–70° N, r = !0.55) and the band
immediately to the north (70–75° N, r = !0.54), while
correlation strength decreases with increasing distance
toward the south (Fig. 2d). The inverse relationship
between the regional SAT data and ∆13Ccorr suggests
that increased temperatures during the ETCW con-
tributed to a decrease in water availability (e.g., soil
drying, Natali et al. (2015)) and an increase in water
stress at the site. To compensate, the trees likely
decreased stomatal conductance (decrease of ci/ca),
which resulted in a decrease in D13C (Eqn (1)). Correla-
tions between D13C and temperature (e.g., Loader et al.,
2010; Liu et al., 2014) or sunshine (e.g., Young et al.,
2010; Gagen et al., 2011b; Loader et al., 2013) may also
suggest an increase in photosynthetic rate, but declines
in stomatal conductance in response to drying cannot
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be discounted and likely dominate in similar dry cli-
mates (e.g., Gagen et al., 2007). Separation of the effect
of stomatal conductance and photosynthetic rate on
D13C is difficult (McCarroll & Pawellek, 2001), but may
be able to be achieved through conceptual models
requiring a multi-isotopic approach and determination
of relative humidity from d18O (Scheidegger et al.,
2000).

Discussion

Is twentieth-century warming evident within annual
d13C tree-ring records from across the northern high
latitudes?

To determine whether the decrease in D13C observed in
far northeastern Siberia is in fact a result of ETCW, and
not a local change in precipitation, for example, we
compare our dataset to annual tree-ring d13C records
produced from other northern high-latitude sites
(Fig. 1; Table S1). We limit this comparison to sites
north of 62° N (in order to match the spatial range of
the SAT dataset provided within Fig. 3 of Yamanouchi,
2011) and include all records that span at least the
entirety of the Cherskiy record reported here (1912–
1961) (in order to produce a common reference period).
Although several of the records extend older than the
year 1900 (Berninger et al., 2000; Gagen et al., 2007,
2008; Kirdyanov et al., 2008; Loader et al., 2013), we
limit our analysis to data from the twentieth century.
The resulting dataset spans 99 years and includes five
different species of Pinus, Picea, and Larix growing
across sites in northern Asia (n = 7), Europe (n = 7),
and North America (n = 1; Fig. 1; Table 2). The wide
range of d13C values within this dataset (!21.7 to
!28.2&, Fig. 3a) is consistent with the wide range of
species and environments sampled (Leavitt, 2010). A
compilation of annual tree-ring d13C data from across
this broad area should reflect regional climate trends
(such as the ETCW), while averaging out differences
attributable to local site conditions (Gagen et al., 2011a).
Studies have shown that combining d13C chronologies
of disparate species collected from widely spaced sites
into a single average record removes species-specific
physiological influences and typically leads to stronger
correlations with large-scale temperature trends than
d13C chronologies sourced from a single site (Treydte
et al., 2007; Saurer et al., 2008). We note that several
individual tree-ring chronologies from the taiga do sug-
gest the presence of the ETCW (as low ∆13C values or
high d13C values) (Gagen et al., 2007, 2008; Sidorova
et al., 2008; Loader et al., 2013), but changes in d13C or
∆13C have not been specifically attributed to the ETCW
in these, or any other study. Because the compiled tree-

Table 1 d13C data for the three Larix tree cores (Larix01, Lar-

ix01, and Larix03) sampled in this study. pCO2 and d13CCO2

data are from McCarroll & Loader (2004)

Year
pCO2

(ppmv)
d13CCO2

(&)

d13C
Larix01
(&)

d13C
Larix02
(&)

d13C
Larix03
(&)

1912 298.4 !6.69 !26.23 !25.71 !25.17

1913 299.4 !6.69 !25.64 !26.37 !25.98
1914 300.4 !6.70 !26.72 !24.04 !26.01
1915 301.0 !6.70 !25.81 !24.31 !26.76

1916 301.6 !6.70 !26.34 !25.35 !25.47
1917 302.2 !6.71 !24.46 !22.73 !25.48
1918 302.8 !6.71 !26.89 !25.96 !26.12
1919 303.5 !6.72 !25.87 !25.35 !25.63

1920 303.4 !6.72 !26.47 !25.70 !27.11
1921 303.3 !6.73 !26.18 !24.23 !26.83
1922 303.3 !6.73 !26.17 !24.37 !26.38

1923 303.2 !6.74 !25.95 !26.22 !25.33
1924 305.2 !6.74 !25.90 !24.78 !25.76
1925 305.5 !6.74 !26.62 !26.35 !26.83

1926 305.8 !6.75 !26.42 !24.94 !25.83
1927 306.1 !6.75 !26.80 !25.18 !26.94
1928 306.4 !6.76 !26.35 !25.29 !25.71
1929 306.8 !6.76 !26.37 !24.94 !26.15

1930 306.9 !6.77 !26.01 !25.85 !26.67
1931 307.0 !6.77 !26.51 !26.45 !27.23
1932 307.1 !6.78 !26.37 !25.59 !26.49

1933 307.2 !6.78 !26.79 !26.38 !26.77
1934 307.5 !6.78 !26.16 !26.78 !25.84
1935 307.8 !6.79 !26.84 !25.23 !26.84

1936 308.4 !6.79 !26.60 !25.24 !26.39
1937 309.0 !6.80 !26.15 !24.97 !25.97
1938 309.6 !6.80 !25.99 !24.02 !25.69
1939 310.9 !6.81 !25.60 !24.37 !25.90

1940 311.9 !6.81 !25.54 !24.78 !24.87
1941 310.7 !6.82 !25.63 !24.81 !26.05
1942 311.3 !6.82 !25.52 !24.55 !25.68

1943 310.8 !6.82 !25.83 !24.22 !25.95
1944 311.6 !6.83 !26.64 !26.21 !25.81
1945 309.7 !6.83 !26.96 !25.60 !26.26

1946 311.5 !6.84 !26.83 !25.39 !25.24
1947 311.0 !6.84 !26.65 !25.31 !26.54
1948 310.5 !6.85 !26.78 !25.08 !26.48
1949 311.2 !6.85 !26.48 !25.59 !26.45

1950 312.6 !6.86 !26.78 !25.15 !27.52
1951 312.4 !6.86 !27.79 !25.92 !26.59
1952 312.3 !6.86 !27.25 !26.12 !26.36

1953 312.1 !6.87 !27.71 !25.84 !26.23
1954 311.7 !6.87 !27.01 !24.16 !27.01
1955 313.7 !6.88 !27.67 !25.53 !26.93

1956 316.3 !6.88 !27.13 !24.75 !27.36
1957 314.0 !6.89 !27.60 !25.45 !26.54
1958 314.3 !6.89 !27.79 !25.18 !25.83
1959 315.4 !6.90 !28.08 !26.58 !26.59

1960 316.3 !6.90 !27.85 !26.83 !26.59
1961 317.8 !6.90 !27.49 !26.60 !26.19
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ring dataset extends throughout the 20th century, here
we also discuss whether the anthropogenic warming of
the latter part of the 20th century can be observed in
these high-latitude tree-ring records.
For this comparison, all d13C records were cor-

rected for changes in d13CCO2 and pCO2 following the
same methods used for our dataset from far north-

eastern Siberia (Eqns (2) and (3)). The resulting
∆13Craw and ∆13Ccorr records were normalized relative
to the reference period represented by the Cherskiy
record (1912–1961) to allow comparison across the
wide range of absolute values measured (Fig. 3b, c).
The average, normalized D13Ccorr record yielded
decreasing values across the periods spanning the
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Fig. 2 Annual d13C (a), D13Craw (b), and D13Ccorr (c) values across the ETCW from three tree cores sampled from near Cherskiy, Russia,

in far northeastern Siberia. The measured d13C data are available in Table 1. (d) Mean annual SAT anomalies determined over land for

five latitudinal bands (50–55, 55–60, 60–65, 65–70, and 70–75° N) from Figure 5 within Yamanouchi (2011). Correlation coefficients are

reported between D13Ccorr and SAT for each latitudinal band. Note that lower D13C values from the late 1930s through the 1940s corre-

spond with the period of increased temperatures at high latitudes (i.e., the ETCW).
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ETCW and the LTCW (Fig. 3c). These declines in
D13C are consistent with a decrease in ci/ca (Eqn (1))
via a decrease in stomatal conductance or increase in
photosynthetic rate.
In order to investigate whether the trends in

D13Ccorr can be attributed to temperature-induced
water stress, we compared the Arctic-wide ∆13Ccorr

chronology with SAT anomalies reported for 62–90°
N (Fig. 3d). Across the entire record (1900–1998),
there was a significant negative relationship
(r = !0.53, P < 0.0001) between the Arctic-wide
∆13Ccorr chronology and the SAT record, suggesting
that the natural and anthropogenic region-wide
warming events are recorded in tree-ring tissue. The
negative correlation is particularly strong across the
periods of greatest warming (ETCW, r = !0.84,
P < 0.0001; rapid LTCW, r = !0.55, P = 0.04), suggest-
ing that rapid warming had a significant effect on
D13Ccorr. An increase in D13Ccorr is observed during
the 1940s, which corresponds with middle twentieth-
century cooling (MTCC), but D13Ccorr values decrease
during the latter part of the MTCC, while tempera-
tures continued to cool (Fig. 3c, d). The small decline
in D13Ccorr across the slow LTCW (1966–1985) is con-
sistent with gradual warming during this period
(Fig. 3c, d). The negative correlations observed here
between D13Ccorr and SAT across the twentieth cen-
tury are consistent with drying conditions in per-
mafrost environments in response to climate warming
(Bryukhanova et al., 2015; Natali et al., 2015).
We evaluated changes in iWUE within the northern

taiga in response to increasing pCO2 and changing cli-
mate using the following relationship presented in Far-
quhar & Richards (1984):

iWUE ¼ ðca ! ciÞ=1:6 ð4Þ

where ci is calculated using D13Craw and Eqn (1).
Although ca and ci both increased in our dataset, ca ! ci
also increased, yielding a ~17% increase in iWUE across
the 20th century (Fig. 4a). The net increase in iWUE
observed here for the northern taiga is consistent with
results from trees growing across Europe (Andreu-
Hayles et al., 2011; Gagen et al., 2011a; Frank et al.,
2015), southeastern Asia (Loader et al., 2011), eastern
Siberia (Tei et al., 2014), and high-altitude sites in Mex-
ico, Italy, and Chile (G"omez-Guerrero et al., 2013; Tog-
netti et al., 2014). Although increased water stress and
increased pCO2 have opposite effects on D13C (and ci/ca
via Eqn (1)) (i.e., increased water stress = decreased
D13C; increased pCO2 = increased D13C), both cause an
increase in ca ! ci (and iWUE) (Schubert & Jahren,
2012). To isolate the effects of climate change on iWUE,
we removed the effects of changing pCO2 by calculating
iWUE using the pCO2-corrected record (i.e., D13Ccorr)
and holding ca constant at the year 1900 level (Fig. 4b).
From this calculation, we find that the increase in iWUE
attributed to changing climate is 0.8% per decade across
the twentieth century (Fig. 4b), compared with the cal-
culated 1.7% per decade increase in iWUE when evalu-
ating the combined effects of pCO2 and climate
(Fig. 4a). Therefore, approximately half of the 17% total
increase in iWUE observed across the twentieth century
can be attributed to a change in ci/ca in response to
changing climate (i.e., 8%) with the other half (i.e., 9%
increase in iWUE) resulted directly from increases in
pCO2.
Our compilation of annual tree-ring data suggests

that a common region-wide temperature signal exists
within tree-ring chronologies across the northern high

Table 2 List of tree-ring sites north of 62° N that were used in this study. Site names correspond with the labels in Fig. 1

Site name Location Species No. of trees Reference

This study 68.73° N, 161.38° E Larix cajanderi 3 This study
Ber 68.4° N, 26.17° E Pinus sylvestris 4 Berninger et al. (2000) (Fig. 1a)
Gag1 69.67° N, 27.08° E Pinus sylvestris 2 Gagen et al. (2007) (Fig. 2a, solid black line)
Gag2 68.5° N, 27.5° E Pinus sylvestris 10 Gagen et al. (2007) (Fig. 2a, solid gray line)
Gag3 68.89° N, 27.5° E Pinus sylvestris 10 Gagen et al. (2008) (Fig. 2a, avg of black and gray lines)

Hil 69° N, 28.2° E Pinus sylvestris 4 Hilasvuori (2011) (Fig. 4)
Hol 68.1° N, 60° E Picea abies 2 Holzk€amper et al. (2008) (Fig. 9, avg of T2, T5)
Kir 63.1° N, 139.08° E Larix cajanderi 10 Kirdyanov et al. (2008) (Fig. 2, bottom panel, d13C corr1)

Loa 68.2° N, 20° E Pinus sylvestris 5 Loader et al. (2013) (Fig. 4, black line)
Por 68.4° N, 133.81° W Picea glauca 3 Porter et al. (2009) (Fig. 4, thin black line)
Sef 63.17° N, 13.5° E Pinus sylvestris 7 Seftigen et al. (2011) (Fig. 2a)
Sid1 70° N, 148° E Larix cajanderi 4 Sidorova et al. (2008) (Fig. 3 dashed line)

Sid2 64.53° N, 100.23° E Larix gmelinii 8 Sidorova et al. (2009) (Fig. 3a, thin line)
Sid3 72° N, 102° E Larix gmelinii 4 Sidorova et al. (2013) (Fig. 2b, thin line)
Wat 64.27° N, 66.05° E Pinus sylvestris 9 Waterhouse et al. (2000) (Fig. 2a)
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latitudes. Similar temperature trends may be visible in
tree-ring records from other regions across the planet in
response to global warming, with correlations between
temperature and carbon isotope values being strongest
in regions particularly sensitive to climate change. Dif-

ferences in the ∆13Ccorr chronologies among various
sites also reflect local effects on carbon isotope fraction-
ation, including site-specific changes in precipitation
(e.g., Holzk€amper et al., 2008), humidity (e.g., Edwards
et al., 2000), soil moisture (e.g., Walker et al., 2015),
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Fig. 3 Annual tree-ring data and SAT anomalies for sites >62° N across the twentieth century. (a) d13C data reported here from near

Cherskiy, Russia, combined with d13C data compiled from 14 published records (Fig. 1, Table 2). The d13C data are available in
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for the best-fit red lines drawn through each subperiod (ETCW, MTCC, slow LTCW, rapid LTCW). Note the opposite signs when com-
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temperature (Gagen et al., 2007), and cloud cover (e.g.,
Young et al., 2010; Gagen et al., 2011b). We therefore
recognize that site-specific relationships between
∆13Ccorr and local climate records are likely to produce
stronger correlations and perhaps indicate additional
controls on the ∆13Ccorr signal than what can be gained
from the regional context explored here. Averaging
across these diverse sites, however, produces a region-
wide record of warming, evident across high-latitude
forests. The changes in carbon isotope fractionation
observed here suggest decreasing stomatal conductance
in response to natural and anthropogenic warming.
This result is consistent with field experiments con-
ducted using open-top chambers that demonstrated
increased drying in permafrost soils in response to
warming temperatures (Natali et al., 2015), but we can-
not rule out a change in photosynthetic rate caused by
changes in summer sunshine, as has been measured at
some sites (Gagen et al., 2011b). The small change in
∆13Ccorr observed during the MTCC and slow LTCW

periods suggests that temperature changes were not
sufficient to induce significant changes in soil moisture
or a measureable stomatal response in the studied trees,
or that other concomitant changes in climate canceled
out the small decreases in ∆13Ccorr that may otherwise
have been observed. Conversely, the significant warm-
ing associated with both the ETCW and rapid LTCW
(0.7 °C per decade for each) did yield measureable
decreases in ∆13Ccorr, likely as a result of increasing
water stress.
The D13C data suggest increasing iWUE in northern

taiga forests across the twentieth century that is dri-
ven in roughly equal proportions by reductions in ci/
ca in response to changing climate and increasing
pCO2. Although rates of change in iWUE in response
to climate change averaged 0.8% per decade across
the entire record, rates of 2.1% per decade and 1.7%
per decade were observed across the two intervals
with the greatest rates of warming (ETCW and rapid
LTCW, respectively). These results demonstrate that
removal of the effect of pCO2 on D13C yields a clear
signal of temperature-induced water stress within
northern, high-latitude forests in response to climate
warming.
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